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Final Report 

The original focus of this work was on the automatic acquisition (learning) of stochastic 
models. The motivation was the lack of such models for military problems, specifically 
air-campaign planning, and the existence of new algorithms that could, if the appropriate 
models were available, considerably improve the accuracy and efficiency of military plan- 
ning. This final report describes the course of our investigations, some unanticipated turns, 
and the direction that our research has taken as a consequence of what we have learned. 

In recent years, we developed new models and techniques for representing stochastic 
processes [Dean and Kanazawa, 1988, Boutilier et al., 1995a] that enabled us to compactly 
represent problems that couldn't be represented at all using previous techniques. We also 
had met with success in solving such problems using new methods that directly exploit the 
structure in the representations [Boutilier et al., 1995b, Dean et aL, 1995, Dean and Lin, 
1995, Lin and Dean, 1994, Lin and Dean, 1996, Lin and Dean, 1995]. Our models achieved 
efficiency of representation by factoring the state and action spaces of a dynamical system 
using a set of features (variously called "state variables" or "fluents"). For example, the 
state space for an air-campaign planning problem would have state variables for the status 
of each target and the location of each aircraft. 

We believed when we wrote the proposal for this grant that it would be relatively 
straightforward to extend methods for learning hidden Markov models [Rabiner and Juang, 
1986] to handle our factored representations. For certain specialized problems, researchers 
had already met with some success in doing exactly this [Ghahramani and Jordan, 1995]. 
However, in trying to carry out our research agenda1. we encountered two problems: First, 
factored models have much more structure than traditional (flat) hidden Markov models 
and the class of problems we were particularly interested in (highly combinatoric) was not 
amenable to the specialized methods in the literature. Second, in many cases, even if you 
could learn the models, you couldn't necessarily use the resulting representations to solve the 
corresponding decision problems. We found that we had some way to go in understanding 
the structure of factorial models and how to exploit this structure computationally before 
we could learn such models effectively. 

Our first breakthrough came in 1997, when, in trying to understand the work of Boutilier 
et al., we discovered how to characterize the structure their algorithm was taking advantage 
of in terms of bisimulation equivalence and automata equivalence [Hartmanis and Stearns, 
1966]. The result was a series of papers [Dean and Givan, 1997, Givan and Dean, 1997, 
Dean et al., 1997] in which we were able to explain the sources of combinatorial leverage 

'We explored a wide range of approaches during the first year and carried out extensive experiments. 
A good deal of the material compiled during that first year is available at the Brown Computer Science 
Dynamics web site: http://www.cs.brown.edu/research/ai/dynamics/. 



in the structured methods of Boutüier et al. and others. We found that the structure was 
due to certain symmetries in the dynamics, that, in certain cases, could be exploited to 
significantly reduce computation time. During the same period, we developed algorithms 
that were able to realize these reductions in computation time. 

We also found other sources of computational leverage that were not accessible to these 
methods. In particular, we found sources of computational leverage in air-campaign plan- 
ning problems that current algorithms could not handle. This prompted us to consider the 
sort of structure arising in systems that can be decomposed into smaller, weakly-coupled 
component systems. And, in 1998, we described a type of structure found in air-campaign 
planning problems and related logistics problems; we also developed approximation algo- 
rithms that performed extremely well on such problems [Meuleau et al., 1998]. 

Following this unanticipated side journey, we are now returning to the problem of auto- 
matically learning stochastic models from data. We now have a great deal more experience 
in actually constructing (painstakingly by hand) models for air-campaign planning and re- 
lated problems. We also have a much better idea of what aspects of such problems are useful 
to represent in the sense that they have an impact on the performance of decision-making 
algorithms and they provide computational leverage in solving these highly combinatoric 
problems. In recent months, we discovered a method for symbolically solving a system 
of equations of the form found in factored Markov decision processes. We also developed 
two structured iterative methods based on, respectively, conjugate gradient search and an 
acceleration method attributed to Chebyshev. These methods are of note particularly for 
the fact that they enable us bring to bear a large body of work on numerical methods for 
solving systems of equations, assuming of course that we can figure out how to factor the 

equations. 

We are currently working on "compiler" technology that will work in concert with 
learning algorithms to explore the space of tractable models, rather than the much larger 
space of all dynamical models, many of which would do us no good even if we were to learn 
them. This compiler technology would enable us to identify and exploit the structure due 
to symmetries in the dynamics arising from (stochastic) bisimulation equivalence [Dean and 
Givan, 1997] and due to weakly-coupled subprocesses [Meuleau et al., 1998]. We are the 
first to admit that this work is not traditional AI, but we are making significant progress 
and our approaches and methodology have been adopted by a number of labs. 
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